Robust fault detection in hybrid systems using set-membership parameter estimation.

M. Maïga¹,², N. Ramdani¹, L. Trévé-Massuyès²

¹ Univ. Orléans, INSA-CVL, PRISME, EA 4229, F45072, Orléans, France
² CNRS, LAAS, University of Toulouse, 31031 Toulouse
(e-mail: mmaiga@laas.fr, nacim.ramdani@univ-orleans.fr, louise@laas.fr)

Abstract:
Hybrid systems exhibit continuous and discrete dynamics and are encountered in many complex and safety-critical systems. Due to their complex nature, the fault diagnosis task becomes very challenging. In this paper, we present a method to perform fault detection with a nonlinear hybrid system using set-membership parameter estimation in a bounded-error framework. Our method relies on a consistency test between the feasible parameter set as computed in normal fault-free operation or given as nominal, and the feasible parameter set as estimated during on-line operation over a given time horizon. Hence, a fault is detected if the feasible set for the parameter vector estimated online is inconsistent with nominal values. An illustrative example is presented.

Keywords: Bounded error, hybrid systems, interval analysis, nonlinear systems, estimation, reachability, uncertain systems.

1. INTRODUCTION

Nowadays, it is more and more required from current systems to embed capabilities for autonomy that allow them to counteract the occurrence of a fault or any other disturbances, while still providing a reliable functional or degraded service. These systems should contain mechanisms to perceive a degraded operating mode without human intervention, and then perform the necessary corrections for the restoration of a normal operating mode, or a degraded mode but safe. In this framework, a key challenge is to take into account uncertainties. It is essential to consider this incomplete knowledge, which can take in the form of ill-defined disturbances, parameter variations due to a tolerant design, faults, etc. Model-based fault detection and localization methods rely on the detection of discrepancies between the hybrid system outputs and model outputs (see Fig. 1). In the literature there are many model-based fault diagnosis methods available for dynamical systems. For instance, the state estimation approach (Wang et al. (2007); Isermann (1997); Zhao et al. (2005)), the parity space approach (Shumsky and Zhirabok (2012); Bayoudh et al. (2009); Fliss and Tagina (2013)), the parameter estimation approach (Isermann (1993, 1984); Wahrburg and Adamy (2012); Vento et al. (2012)). However, to the best of our knowledge, there is no work to date that investigates set-membership approach to model-based fault detection in the "unknown but bounded error" framework with hybrid dynamic systems (HDS).

In the "unknown but bounded error", all the uncertain quantities (measurement errors, modeling errors and uncertainty) are taken in a bounded set with known bounds. Estimation problems in this framework are then referred to as set-membership estimation. One of the main advantages of the set-membership estimation approach is that it provides a guaranteed decision about fault occurrence, in contrast with the classical notion of risk, usually defined in terms of probability of occurrence and false detection. In other words, these methods allow us to avoid false positive (false alarm). Finally, the contribution of our paper resides in the set-membership fault detection of HDS using a parametric approach, i.e. fault detection relies on the identification of the parameter vector. We have recently proposed an algorithm for performing hybrid reachability (Maïga et al. (2013, 2014)). This algorithm is at the core of the method proposed in this paper. We first define set-membership approach to fault detection with hybrid system, then set membership parameter estimation with hybrid systems, and describe how to build the estimation approach by combining our algorithm for hybrid reachability, and the SIVIA algorithm for set inversion (Jaulin and Walter (1993)) to solving the parameter estimation problem for nonlinear hybrid systems in a bounded-error framework.

The paper is structured as follows: Section 2 formulates the set-membership fault detection, and the parameter estimation problems for HDS. The set computation tools
Fig. 1. The monitoring of a hybrid dynamical system in the bounded-error framework

used in the paper are presented in Section 3. Section 4 presents hybrid reachability concepts i.e. interval methods for solving the initial value problem for ordinary differential equation, and the set-membership guard crossing problem. The set-membership fault detection and hybrid parameter estimation will be presented in Section 5. Section 6 gathers experimental evaluation on hybrid mass-spring system.

2. PROBLEM STATEMENT : SET-MEMBERSHIP FAULT DETECTION

Considering the hybrid system is modeled as a hybrid automaton which is defined as in (Ahur et al. (1995)):

\[HA = (Q, \Sigma, \Delta, \Sigma, A, Inv, F) \]

- \(Q \) is a set of locations \(\{q\} \) whose continuous dynamics, i.e. flow transitions, are described by non-autonomous differential equations \(f_q \in \mathcal{F} \) of the form:

\[\dot{x}(t) = f_q(x,p,t) \]

where \(f_q : \mathcal{D} \times \mathcal{P} \rightarrow \mathcal{D} \) is nonlinear and assumed sufficiently smooth over \(\mathcal{D} \subseteq \mathbb{R}^n \), with dimension \(n \) which may depend on \(q \), and \(p \in \mathcal{P} \), where \(\mathcal{P} \) is an uncertainty domain for the parameter vector \(p \).

- \(Inv \) is an invariant, which assigns a domain to the continuous state space of each location:

\[Inv(q) : \nu_q(x(t),p,t) < 0 \]

where inequalities are taken componentwise, \(\nu_q : \mathcal{D} \times \mathcal{P} \times \mathbb{R}^m \rightarrow \mathbb{R}^m \) is also nonlinear, and the number \(m \) of inequalities may also depend on \(q \).

- \(A \) is the set of discrete transitions \(\{e = (q \rightarrow q')\} \) given by the 5-uple \((q, \text{guard}, \sigma, p, q')\), where \(q \) and \(q' \) represent upstream and downstream locations respectively; guard is a condition of the form:

\[\text{guard}(e) : \gamma_e(x(t),p,t) = 0 \]

\(\sigma \) is an event, and \(p \) is a reset function assumed to be affine.

A transition \(q \rightarrow q' \) may occur when the continuous state flow reaches the guard set, i.e. when the continuous state satisfies condition (4). Introducing the new state variable \(z = (x, p, t) \) with \(\dot{z} = (\dot{x}, 0, 1) \), and defining \(\mathcal{Z} = \mathcal{D} \times \mathcal{P} \times \mathbb{R}^+ \), equations (2-4) are rewritten:

\[\dot{z}(t) = f_q(z) \]

\[\nu_q(z(t)) < 0 \]

\[\gamma_e(z(t)) = 0 \]

so that all uncertain quantities are embedded in the initial state vector.

Let us also consider the following measurement equation

\[y(t) = g_q(x, p, t) \]

where function \(g_q : \mathcal{D} \times \mathcal{P} \times \mathbb{R}^+ \rightarrow \mathcal{D} \) is nonlinear.

2.1 Set-membership parameter estimation

We assume that measurements \(\hat{y}_j \) of the output vector are available at sampling times \(t_j \in \{t_1, t_2, ..., T_n\} \subset [t_0, T_{end}] \).

Note that the sampling interval need not be constant. The measurement noise is a discrete time signal assumed additive and bounded with known bounds. Denote by \(E_j \) a feasible domain for the output error at time \(t_j \) : the feasible domain for the model output at time \(t_j \) is then given by:

\[\mathcal{Y}_j = \hat{y}_j + E_j \]

Given the hybrid model (1-4), the measurements and error bounds, the goal of this paper consists to estimate the parameter vector \(p \) by determining the set \(\mathcal{S} \) of all acceptable parameters:

\[\mathcal{S} = \{ p \in \mathcal{P}_0 | \forall t \in [t_0, T_{end}], \]

\[\text{flow}(q) \land \text{Inv}(q) \land \text{guard}(e) \]

\[\land \bigwedge_{j \in \{1, 2, ..., T_n\}} g_q(x, p, t) \in \mathcal{Y}_j \} \]

where the set \(\mathcal{P}_0 \) is the initial search space for the parameters. The characterization of the solution set \(\mathcal{S} \) is a set inversion problem i.e starting from the set \(\mathcal{Y} \), we want to reconstruct the original set \(\mathcal{S} \).

2.2 Set-membership fault detection

In the literature (e.g. Guerra and Puig (2008)), fault detection is usually performed either using a “direct” or an “inverse” test. The direct test relies on a worst-case estimation approach whereas the inverse test relies on set-membership estimation approaches, a framework similar to the one investigated in this paper (Blesa et al. (2011, 2012)).

The direct test is based on the evaluation of the residual obtained from the difference between measurements (8) and the output of the hybrid model (1-4) at every instant \(t_j \):

\[r_j = y_j - \hat{y}_j \]

Ideally, when neither modelling errors nor noise are present, the residual given by Eq (11), known also as parity equation, should be different from zero in a faulty scenario and zero otherwise. However, because of modelling and measurement errors and uncertainty, one can derive a feasible domain for the residuals, and the detection test now relies on checking the following condition assuming parametric uncertainty, i.e. \(0 \notin \Gamma_j \), where \(\Gamma_j \) is the set of possible residuals considering parameter uncertainties and an additive bounded noise, \(\Gamma_j = \{r_j | r_j = y_j - \hat{y}_j + \epsilon_j \} \in E_j \} \).
Here we use a set-membership extension of the inverse test as follows using \mathbb{S} given by Eq (10) and \mathbb{P}_N denoting the set of nominal parameter values.

1. First \mathbb{P}_N is estimated with nonfaulty data,
2. during operation, set \mathbb{S} as given by (10) is estimated from running data (possibly containing faults) over a given horizon, and
3. the intersection $\mathbb{S} \cap \mathbb{P}_N$ is computed,
4. a fault is detected if $\mathbb{S} \cap \mathbb{P}_N \neq \emptyset$, which means that the nominal parameter values cannot explain the actual data while considering error bounds; actual data and the model are inconsistent hence there should be a fault.

Our method for fault detection with hybrid system relies on a new method for set-membership parameter estimation. It uses interval analysis (Moore (1996)), zonotope enclosures (Alamo et al. (2005)) and set inversion (Jaulin and Walter (1993)). It relies also on a new approach to hybrid reachability that is described briefly in next section.

3. HYBRID REACHABILITY

3.1 Continuous transitions

Our validated ODE solvers are based on a three-stage Taylor series approach. The first stage of a Taylor series based verify the existence and uniqueness of the solution using the Banach fixed point theorem and the Picard-Lindelöf operator (Moore (1996)). The second stage consist to compute an a priori enclosure \tilde{z}_j such that $\tilde{z}_j \supseteq \mathbb{Z}(t)$ for all $t \in [t_j, t_{j+1}]$. Hence, \tilde{z}_j is indeed an over-approximation of the reachable set over $[t_j, t_{j+1}]$. The third stage of a Taylor series method uses compute a tighter enclosure for the set of solutions of (5) at t_{j+1} using a Taylor series expansion of order k of the solution at t_j, where \tilde{z}_j is used to enclose the remainder term:

$$\mathbb{Z}(t_j, z_j) \subseteq [z(t_j, z_j) = z_j + \sum_{i=1}^{k} \left(t - t_j \right)^i q_i^{(2)}(z_j) + \left(t - t_j \right)^k q_k^{(2)}(z_j), \quad (13)$$

where t can be taken as t_{j+1} or any $t \in [t_j, t_{j+1}]$, which is not necessarily on the time-grid, and the $q_i^{(2)}(z_j)$ are the Taylor coefficients. In (Nedialkow et al. (1999)), (13) is turned into a computationally acceptable scheme that controls the wrapping effect by using the mean-value approach complemented by QR-factorization as proposed by Lohner. The solution enclosure at time $t \in [t_j, t_{j+1}]$ can be computed in the form mean-value:

$$\mathbb{Z}(t, t_{j+1}, z_0) \subseteq \{ v(t) + A(t)r(t) \mid v(t) \in [v](t), r(t) \in [r](t) \}, \quad (14)$$

Defining $\mathbb{X}(t) \subseteq \{ z(t), \dot{z}(t), [v](t), [r](t), A(t) \}$, where $\dot{z}(t) := M_{\text{d}}(z(t))$, the algorithm $\varphi^{v,r}(\cdot)$ is used in this paper to compute the solution set of (5) at time $t \in [t_j, t_{j+1}]$. It is the same as the one developed in (Maiga et al. (2013)). The solution enclosure at time t_{j+1} is given by $\mathbb{X}(t_{j+1}) = \varphi^{v,r}(\mathbb{X}(t_j), t_j, t_{j+1}, [z_j])$.

Proposition 1. The solution domain (14) is the Minkowski sum2 of a parallelotope, i.e. an oriented box, and an aligned box, abbreviated as an MSPB $\mathbb{Z}(t) = A(t)[v](t) \oplus [r](t)$. An MSPB is a particular zonotope generated by $2n$ line segments: $\mathbb{Z}(t) = c(t) \oplus R(t)[B^2]^n$, where, for all t, the point vector $c(t) \in \mathbb{R}^n$ and the point matrix $R(t) \in \mathbb{R}^{n \times 2n}$ satisfy: $c(t) = A(t)\text{mid}([v](t)) + \text{mid}([r](t))$, and $R(t) = [A(t)dr([r](t))] \mid dr([v](t))]$, where mid denotes matrix concatenation, and $dr(\cdot)$ is short for diag(rad(\cdot)), i.e. a diagonal matrix of real numbers each corresponding to the radius of an interval number.

3.2 Discrete transitions

We first consider event detection and localization stages. In our previous work (Ramdani and Nedialkow (2011)), given Algorithm $\varphi^{v,r}(\cdot)$, detecting and localizing hybrid transition is shown to be equivalent to finding the set $\mathbb{Z}^{\ast} \times \mathbb{Z}_2^{\ast}$, where \mathbb{Z}^{\ast} is the initial set consisting of the initial state vectors z_2^{\ast} that lead to a $z(t_e, t_j, z_j)$ that satisfies (7) at t_e and $t_e \in [t_j, t_{j+1}]$. Accounting for the mean value form introduced in section 3.1, finding such set is performed by solving the following CSP:

$$\left[\{ t_j, t_{j+1} \} \times r_j, \gamma(\varphi(x(t), t, \cdot)) = 0 \right]. \quad (15)$$

If the set $\mathbb{Z}^{\ast} \times \mathbb{Z}_2^{\ast}$ is not empty, one can assume that the event $e = q \rightarrow q'$ occurs at $t_e = t^\ast$ and that $[x](t_e) = [x][t^\ast, t]$. The discrete transition can then be computed from $[z(t_e)]$ thanks to the reset function ρ. (Ramdani and Nedialkow (2011)) enhances the method by proposing a bisection strategy that account for the size of \mathbb{Z}^{\ast} and \mathbb{Z}_2^{\ast}. We use a conservative relaxation of the above algorithm as described in (Maiga et al. (2013, 2014)) : in fact, we do not search all initial state vectors that lead the flow to satisfy the guard condition, but we merely compute the a priori solution \mathbb{X}, i.e. an enclosure of the reachable set over the time interval $[t_0, t_1]$. Having determined $\mathbb{X}(t_{j+1})$, (Ramdani and Nedialkow (2011)) proposes to compute the flow/invariant intersection at time t_{j+1} by solving the following CSP:

$$\left[\{ v_{j+1} \} \times \{ r_{j+1} \}, \gamma(v_{j+1}, A_{j+1}r_{j+1}) < 0 \right]. \quad (16)$$

If $\mathbb{Z}^{\ast} \times \mathbb{Z}_2^{\ast}$ is the solution set of CSP (16), then the solution set $\mathbb{Z}_{j+1} = \text{inv}(q) \cap \mathbb{Z}(t_{j+1})$ is given by:

$$\mathbb{Z}_{j+1} = \{ v_{j+1}, A_{j+1}r_{j+1}, v_{j+1} \in [v](t), r_{j+1} \in [r](t) \}.$$
Algorithm 1: Algorithm Parameter estimation with hybrid systems

input : $[p], T_{end}, \Delta T, hybrid_reach(), F_{(1:n)}, R_{(1:n)}, L_m, \epsilon$

output: L_a, L_r, L_i

$L_c \leftarrow [p], n := \frac{T_{end}}{\Delta T} + 1$

while $L_c \neq \emptyset$ do

$inclusion := 0; [p] := pop(L_c)$

/* Compute hybrid reachable set over whole horizon T_{end} */

$(F_{(1:n)}, R_{(1:n)}) \leftarrow hybrid_reach([p], \Delta T, T_{end})$

for $j = 1$ to n do

/* F_j: Frontier at t_j */

$test \leftarrow Inclusion-Test(F_j, L_m(j))$

if $(test == false)$ then

break;

else if $(test == true)$ then

$inclusion := inclusion + 1$

end if

end for

if $(test == false)$ then

$L_c \leftarrow [p]$;

else if $(inclusion == n)$ then

$L_a \leftarrow [p]$;

else if $w([p]) \leq \epsilon$ then

$L_i \leftarrow [p]$;

else

$\{[p]_l, [p]_r\} := Partition([p])$

$L_a \leftarrow [p]_l$; $L_i \leftarrow [p]_r$;

end if

end if

end if

end while

extension of SIVIA algorithm to hybrid dynamical systems is gathered in Algorithm 1. It allows us to partition the initial bounded search space for the parameters $P = [p]$ and to compute two subsets: an inner approximation S and an uncertainty layer ΔS, such that $S \subseteq S \subseteq S \cup \Delta S$. If P is too uncertain, it might be necessary to partition P and iteratively apply SIVIA to every box of the partition. An alternative method is proposed in Travé-Massuyès et al. (2015) based on a Focused Recursive Partition. In order to extend SIVIA, we only have to define the inclusion test for the hybrid dynamical system. In this paper we propose Algorithm 2, which checks if a union of zonotopes is included in the feasible domain for measurements.

4.2 Checking inclusion test using a union of zonotopes

Proposition 1. Given a zonotope Z and a strip $S = [\eta^T x - d_l, \eta^T x - d_r] \leq \sigma$, the zonotope support strip (Vicino and Zappa (1996)) is defined by $S_z = \{x \in \mathbb{R}^n | q_d \leq \eta^T x \leq q_u\}$, where q_u and q_d are defined as $q_u = \max_{x \in z} \eta^T x$, and $q_d = \min_{x \in z} \eta^T x$.

They are easily computed by $q_u = \eta^T c + \|R^T \eta\|_1$ and $q_d = \eta^T c - \|R^T \eta\|_1$, where $\|\|$ is the 1-norm of a vector.

Theorem 1. (Vicino and Zappa (1996)). The zonotope $Z = c \oplus RBP \in \mathbb{R}^n$ is included in the strip $S_j = [\eta^T x - d_l, \eta^T x - d_r] \leq \sigma$ related to measurement datum $[y_j]$ iff $q_d \geq d_j + \sigma_j$ and $q_u \leq d_j + \sigma_j$ where $d_j = \text{mid}([y_j])$, $\sigma_j = \text{rad}([y_j])$.

Algorithm 2: Inclusion-Test

input : F_j, y_j

output: true, false, uncertain

/* Inclusion test between frontier F_j and datum y_j at time instant t_j */

inclus:=0; nointer:=0;

for $l = 1$ to $\text{length}(F_j)$ do

$A_l, [r_l^T], [v_l^T] := pop(F_j)$;

$Z_l^* := \text{Box2zonotope}(A_l, [r_l^T], [v_l^T])$;

$S_j := \{\eta, d_j = \text{mid}([y_j]), \sigma_j = \text{rad}([y_j])\}$;

if $\forall l \left(Z_l^* \subseteq S_j \right)$ then

inclus++;

end if

if $(Z_l^* \cap S_j == \emptyset)$ then

nointer++;

end if

end for

if $(\text{inclus} == \text{length}(F_j))$ then

return true;

end if

if $\text{nointer} > 0$ then

return false;

end if

return ambiguous;

4.3 SIVIA-H: SIVIA for hybrid systems

Our algorithm (Algorithm 1) generates three lists L_a, L_r, L_i. The first list L_a contains subpaving $[p] \subset [p]$ which yields an inclusion test as true (see Fig.2-b), i.e:

$\forall t_j \in \{t_1, t_2, ..., T_n\}, l = 1, 2, ..., \text{length}(F_j), flow(q) \land Invc(q) \land \text{guard}(e) \land q_u([x_l^T], [p]_l) \in Y_j$ (17)

The union of subpavings as given by the first list L_a characterizes an inner approximation S of set S. The second list L_r consists of all subpaving which the inclusion test is false (see Fig.2-d) i.e. the subpaving for which the structure of the model, the experimental data, and the error bounds are inconsistent, i.e.
∃tj ∈ {t1, t2, ..., Tn}, l = 1, 2, ..., length(Fj), flow(q) ∧ Inv(q) ∧ guard(e) ∧ gq([xj
l], [pi]) ∩ Yj = ∅ (18)
where Fj is the frontier (i.e. the subpaving of solution boxes) at instant tj and [xj
l] = Fj(l) a solution box of the frontier Fj with l = 1, 2, ..., length(Fj). When one cannot conclude about the outcome of the inclusion test, i.e. neither condition (17) nor condition (18) are satisfied, algorithm SIVIA-H bisects the parameter boxes under study and then performed the test again. The choice of the bisection direction is based for example on the size of the box subpaving to partition (Jaulin and Walter (1993)). We repeat this process until the size of the box under analysis reaches a threshold ε chosen by the user. Finally, the third list, denoted Lc, contains all the undetermined boxes which size is smaller than ε.

To summarize, the principle of our approach for set membership parameter identification for hybrid systems, we consider first a parameter box [pi], for which we compute the whole hybrid reachable set over [t0, tend], thanks to our hybrid reachability algorithm (Maiga et al. (2013, 2014)). Then if condition (17) is satisfied, i.e. the parameter box is consistent with the measurements, we add the box to list La to form the inner approximation. To the contrary, if condition (18) is satisfied, i.e. the parameter box is not consistent with the measurements, the model structure and the error bounds, this parameter box is added to the list Lr, i.e. the rejected boxes. Now, if the two conditions are not satisfied and the size of the subpaving is less than the threshold ε, the parameter box is then added to the list Lc, to form the uncertainty layer.

5. NUMERICAL EVALUATION

For the purpose of numerical experimentation, the above system-solving methods have been implemented in the IBEX C++ library (www.ibex-lib.org) and we have used the standard contractor HC4Revise it includes. We have also used Profil/Bias C++ class library for interval computation, FABDAB++ (www.faidbad.com) for automatic differentiation and computing the Taylor coefficients, AML++ (amlpp.sourceforge.net) and Armadillo (arma.sourceforge.net) package for Linear algebra. All experiments were tested on an i5 – 2430M 2.4GHz CPU with 3.8GB RAM running Ubuntu Linux.

5.1 Example : A hybrid mass-spring system

Consider the mass-spring system with three modes of operation q = 1, 2, 3 and four transitions given by :

\[
\begin{align*}
\text{flow}(1) : f_1(x_1, x_2) &= (x_2, \frac{k}{m}x_1 - \frac{b}{m}x_2) \\
\text{inv}(1) : v_1(x_1, x_2) &= x_2 \geq -v_0 \\
\text{guard}(1) : \gamma_1(x_1, x_2) &= x_2 < 0 \\
\text{reset}(1) : p_1(x_1, x_2) &= (\alpha_1 x_1, \alpha_2 x_2) \\
\text{flow}(2) : f_2(x_1, x_2) &= (x_2, \frac{k}{m}x_1 - \frac{b}{m}x_2) \\
\text{inv}(2) : v_2(x_1, x_2) &= x_2 \leq -v_0 \land x_2 \geq v_0 \\
\text{guard}(2) : \gamma_2(x_1, x_2) &= x_2 \leq v_0 \\
\text{reset}(2) : p_1(x_1, x_2) &= (\alpha_1 x_1, \alpha_2 x_2) \\
\text{flow}(3) : f_3(x_1, x_2) &= (x_2, \frac{k}{m}x_1 - \frac{b}{m}x_2) \\
\text{inv}(3) : v_3(x_1, x_2) &= x_2 \leq v_0 \\
\text{reset}(3) : p_1(x_1, x_2) &= (\alpha_1 x_1, \alpha_2 x_2)
\end{align*}
\]

The continuous states are described by two variables \((x_1, x_2)\), where \(x_1\) and \(x_2\) represents respectively the position and the velocity of the mass. \(\alpha_1 = \alpha_2 = 1\). The integration step is chosen constant \(h = 0.1\) in the ODE solver. The time variable is bisected until the threshold \(\varepsilon_T = 0.005\).

To illustrate the performance of our approach we consider two case-studies. In the first one, we will identify \(p_1 = \frac{k}{m}\) and \(p_2 = \frac{b}{m}\) assuming \(p_3 = v_0\) known. In the second one, we will identify \(p_1 = \frac{k}{m}\) and \(p_3 = v_0\) assuming \(p_2 = \frac{b}{m}\) is known.

The mass-spring system operates as follows : first we start in mode \(q_1\) (Fig. 3) with the damper disconnected i.e. \(c_1 = 0\), then when velocity \(x_2\) exceeds a given threshold \(v_0\) \((|x_2| \geq v_0)\), the system connects the damper \(c_2 \neq 0\) and the system switches to mode \(q_2\). Starting from mode \(q_2\), when the velocity is below the threshold \(v_0\) \((|\dot{x}_2| < v_0)\), the damper is disconnected and the system moves back to mode \(q_1\) and so on. We measure the position of the mass. We have 45 possible measurements of the position over the whole time horizon \(T_{end} = 4.48s\), but to illustrate the robustness of our approach, only 12 measurements have been chosen. Initial conditions for state vectors are known with good precision: \(x_1 \in [1.1, 1.2]\), \(x_2 \in [0.1, 0.1]\). Artificial data are gathered with the parameter vector \(p^* = (2.1 \times 0.5 \times 0.5)\) and the assumption on noise bounds are \(E_x = [-0.01, 0.01]\). The initial search box is taken as \([P_0] = [1.5; 3] \times [0; 1.5]\) for the first case-study and \([P_0] = [1.5; 3] \times [0.35; 0.65]\) for the second case-study, \(\varepsilon = 0.01\).

Fig. 4. Solution set in parameters space \(p_2 \times p_1\), and reachable set, for case study 1. Left:Inner approximation(red boxes), uncertainty layer (blue boxes). Right: Reachable set on the phase plan \(x_2 \times x_1\).

Case study 1. The inner and the uncertainty layers approximations are depicted in Fig. 4 for the parameter space \(p_2 \times p_1\). We have also plotted the reachable set in phase plan \((x_2 \times x_1)\) i.e. velocity vs position for all parameters that are consistent with the measurements Fig. 4.

Case study 2. The inner and uncertainty layer approximations are depicted in Fig. 5 for the parameter space \(p_3 \times p_1\). We have also plotted the reachable set in phase plan \((x_2 \times x_1)\) i.e. velocity vs position for all parameters vectors.
Fig. 5. Solution set in parameters space $p_3 \times p_1$, and reachable set, for case study 2. Left: Inner approximation (red boxes), uncertainty layer (blue boxes). Right: Reachable set on the phase plan $x_2 \times x_1$.

that are consistent with the measurements Fig. 5. These figures clearly show that our approach can solve in a very natural way the problem of set-membership estimation of the parameters driving discrete transitions in hybrid systems, i.e. the identification of the guard or switching hyper-surface of the nonlinear dynamical system.

6. CONCLUSION

This paper has addressed the problem of set-membership estimation and fault detection for nonlinear hybrid system in a bounded-error framework. For set-membership parameter estimation, we have shown how to extend the classical set inversion via interval analysis to hybrid dynamical systems using our algorithm for hybrid reachability. The latter makes it possible to build the inclusion test used within our new algorithm SIVIA-H. Fault detection relies on the “inverse” test, i.e. compares the feasible parameter set estimated on the running data with nominal parameter values. The evaluation performed shows nice results for the parameter estimation. Future work will consolidate the use of our parameter estimation for fault detection and diagnosis of hybrid systems.

REFERENCES

